2018

MATHEMATICS - HONOURS

Second Paper

(Module - III)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

R, Q, N denote the sets of real numbers, rational numbers and natural numbers respectively.

Group - A

(Marks: 40)

Answer any four questions.

- 1. (a) State LUB Axiom of the set of real numbers. Show that $\mathbb{R} \mathbb{Q}$, the set of all irrationals, is unbounded. What can be said regarding boundedness of the complement of $\mathbb{R} \mathbb{Q}$? 1+2+1
 - (b) Find sup A and inf A where $A = \left\{ x \in \mathbb{R} / x^2 x 12 < 0 \right\}$
 - (c) Define neighbourhood of a point in \mathbb{R} . Check whether the set $\left\{\frac{1}{n} \middle| n \in \mathbb{N}\right\} \cup \{0\}$ is a neighbourhood of 0 or not.
- 2. (a) Show that every infinite set has a countably infinite subset.
 - (b) Prove or disprove: A countable set cannot have uncountable number of limit points.
 - (c) Prove or disprove: There is no bounded infinite set whose points are isolated.
 - (d) Show that the set $\{x \in \mathbb{R} : \sin x = 0\}$ is countable.
- 3. (a) Let A be a countable set of real numbers. Examine whether $A \cup \left\{ \bigcap_{n=1}^{\infty} \left[-\frac{1}{n+1}, \frac{1}{n+1} \right] \right\}$ is countable.
 - (b) Prove that the complement of an open set is closed. Hence show that for any x > 0, the set $\{nx: n \in \mathbb{N}\}$ is a closed set.
 - (c) Show that every nonempty open set can be expressed as a union of open intervals.

3

3

K(I)-Mathematics-H-2-(Mod3)		ematics-H-2-(Mod3) (2)
4.	(a)	Define Cauchy sequence. Prove that every Cauchy sequence is bounded. Is the converse true Justify.
	(b)	Let $\{I_n\}_{n=1}^{\infty}$ be a sequence of nested closed and bounded intervals. Prove that $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. Is the
		result true for unbounded intervals? Justify. 3+1
5.	(a)	Prove or disprove: If $\{x_n\}$ is a bounded sequence and $\{y_n\}$ is a convergent sequence then $\{x_n, y_n\}$ is a convergent sequence.
	(b)	Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{7}$ and $x_{n+1} = \sqrt{7 + x_n}$ for all $n \ge 1$, is convergen
		and converges to the positive root of the equation $x^2 - x - 7 = 0$.
	(c)	Show that a bounded sequence $\{x_n\}$ is convergent if and only if $\limsup x_n = \liminf x_n$.
6.	(a)	Let $f: D \to \mathbb{R}$ $(D \subseteq \mathbb{R})$ be a function such that $\lim_{n \to \infty} f(x_n) = f(a)$, for any sequence $\{x_n\}$ in D
		converging to $a \in D$. Show that f is continuous at a.
	(b)	Let $f:[0, 1] \to \mathbb{N}$ be a continuous function. Show that f is a constant function.
	(c)	Prove or disprove: If $f: \mathbb{R} \to \mathbb{R}$ is a function such that f^2 is continuous then f is so.
	(d)	Let f, g be two real valued continuous functions of real variable and $f(x) = g(x) \forall x \in \mathbb{Q}$. Show
		that $f(x) = g(x) \ \forall x \in \mathbb{R}$.
7.	(a)	Define Lipschitz function. Show that every Lipschitz function is uniformly continuous. 1+2
	(b)	Let $f(x) = x - 2018 $, $\forall x \in \mathbb{R}$. Show that f is uniformly continuous on \mathbb{R} .
	(c)	Let $\{x_n\}$ be a sequence in (a, b) and $f:(a, b) \to \mathbb{R}$ be an uniformly continuous function. Prove
		that there exists a convergent subsequence of $\{f(x_n)\}\$.
	(d)	Prove or disprove: the function $f(x) = x \sin \frac{1}{x}$, $x \ne 0$, is uniformly continuous on $\left(0, \frac{1}{\pi}\right)$.

Group – B

(Marks: 10)

8. Answer any two questions:

5×2

(a) Find the reduction formula for $\int \sec^n x \, dx$, n being a positive integer greater than 1 and hence find $\int \sec^4 x \, dx$.

(b) Evaluate :
$$\int \frac{dx}{5 + 4\sin x}$$

(c) Evaluate:
$$\int_{0}^{a} \frac{dx}{\left(x^2 + a^2\right)^2} \left(a > 0\right)$$

(d) Evaluate: Lt
$$_{n\to\infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + ... + \frac{1}{8n} \right]$$