2020

COMPUTER SCIENCE - GENERAL

Paper: DSE-A-2

(Operation Research)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Day 2

Answer question no. 1 and any four from the rest.

1. Answer any five questions :
(a) State duality theorem.
(b) Write the necessary and sufficient condition for existance of a feasible solution to a transportation problem.
(c) What is degeneracy in transportation problem?
(d) Define pure strategy.
(e) Explain in brief about the nature of Operations Research.
(f) Define dual problem.
(g) Give a mathematical formulation of the assignment problem.
(h) What assumptions are made in the theory of games?
2. (a) Solve the following transportation problem to find the minimum transportation cost (using NorthWest corner rule) :

(b) Solve the transportation problem using matrix minima method to minimize the cost.

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	Supply
O_{1}	7	7	10	5	11	45
O_{2}	4	3	8	6	13	90
O_{3}	9	8	6	7	5	95
O_{4}	12	13	10	6	3	75
O_{5}	5	4	5	6	12	105
Demand	120	80	50	75	85	

3. (a) A firm plans to begin production of three new products. They own three plants and wish to assign one new plant. The unit cost of producing i at plant j is $C_{i j}$, as given by the folloiwng matrix. Find the assignment that minimizes the total unit cost.

Plant

$$
\text { Product }\left(\begin{array}{ccc}
10 & 8 & 12 \\
18 & 6 & 14 \\
6 & 4 & 2
\end{array}\right)
$$

(b) Give a mathematical formulation of the assignment problem.
4. (a) State the rules for determining a Saddle point.
(b) Solve the following game and determine the value of the game.

$$
A\left[\begin{array}{cc}
B \\
2 & 5 \\
4 & 1
\end{array}\right]
$$

5. (a) Solve the following problem using graphical solution mehtod:

$$
\operatorname{Max} Z=3 x_{1}+4 x_{2}
$$

subject to the constraints :
$4 x_{1}+2 x_{2} \leq 80$
$2 x_{1}+5 x_{2} \leq 180$
$x_{1}, x_{2} \geq 0$.
(b) Use the simplex method to solve the following L.P.P.

Maximize $\quad Z=x_{1}+2 x_{2}$
subject to,

$$
\begin{aligned}
& -x_{1}+2 x_{2} \leq 8 \\
& x_{1}+2 x_{2} \leq 12 \\
& x_{1}-2 x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

6. (a) Write the dual to the following linear programming problem. (L.P.P.) :

Maximize

$$
Z=x_{1}-x_{2}+3 x_{2}
$$

subject to the constraints,

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3} \leq 10 \\
& 2 x_{1}-x_{3} \leq 2 \\
& 2 x_{1}-2 x_{2}+3 x_{3} \leq 6 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{aligned}
$$

(b) Use duality to solve the followign L.P.P. :

Maximize

$$
Z=2 x_{1}+x_{2}
$$

Subject to the constraints :

$$
\begin{align*}
& x_{1}+2 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}-2 x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0 .
\end{align*}
$$

7. (a) Explain how to transform an unbalanced transportation problem into a balanced transportation problem where demand of warehouses is satisfied by the supply of factories.
(b) Solve the following transportation problem.

8. (a) How will you solve an assignment problem where a particular assignment is prohibited?
(b) How can you maximize an objective function in the assignment problem?
