(T(5th Sm.)-Computer Sc.-G/DSE-A-2/CBCS/Day-2)

2020

COMPUTER SCIENCE — GENERAL

Paper : DSE-A-2

(Operation Research)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Day 2

Answer question no. 1 and any four from the rest.

- 1. Answer any five questions :
 - (a) State duality theorem.
 - (b) Write the necessary and sufficient condition for existance of a feasible solution to a transportation problem.
 - (c) What is degeneracy in transportation problem?
 - (d) Define pure strategy.
 - (e) Explain in brief about the nature of Operations Research.
 - (f) Define dual problem.
 - (g) Give a mathematical formulation of the assignment problem.
 - (h) What assumptions are made in the theory of games?
- 2. (a) Solve the following transportation problem to find the minimum transportation cost (using North-West corner rule) :

			Available				
	9	12	9	6	9	10	5
	7	3	7	7	5	5	6
From	6	5	9	11	3	11	2
	6	8	11	2	2	10	9
Required	4	4	6	2	4	2	

Please Turn Over

2×5

T(5th Sm.)-Computer Sc.-G/DSE-A-2/CBCS/Day-2 (2)

(b) Solve the transportation problem using matrix minima method to minimize the cost. 5+5

	D_1	D_2	D_3	D_4	D_5	Supply
0 ₁	7	7	10	5	11	45
0 ₂	4	3	8	6	13	90
O ₃	9	8	6	7	5	95
O ₄	12	13	10	6	3	75
0 ₅	5	4	5	6	12	105
Demand	120	80	50	75	85	

3. (a) A firm plans to begin production of three new products. They own three plants and wish to assign one new plant. The unit cost of producing *i* at plant *j* is C_{ij} , as given by the folloiwng matrix. Find the assignment that minimizes the total unit cost.

Plant

$$Product \begin{pmatrix}
 10 & 8 & 12 \\
 18 & 6 & 14 \\
 6 & 4 & 2
 \end{pmatrix}$$

(b) Give a mathematical formulation of the assignment problem. 5+5

(b) Solve the following game and determine the value of the game.

$$A\begin{bmatrix} 2 & 5\\ 4 & 1 \end{bmatrix}$$

5. (a) Solve the following problem using graphical solution mehtod :

Max $Z = 3x_1 + 4x_2$ subject to the constraints : $4x_1 + 2x_2 \le 80$ $2x_1 + 5x_2 \le 180$ $x_1, x_2 \ge 0.$

(b) Use the simplex method to solve the following L.P.P.

Maximize $Z = x_1 + 2x_2$ subject to,

$$\begin{aligned} -x_1 + 2x_2 &\leq 8\\ x_1 + 2x_2 &\leq 12\\ x_1 - 2x_2 &\leq 3\\ x_1, \ x_2 &\geq 0. \end{aligned}$$

5+5

5+5

- 6. (a) Write the dual to the following linear programming problem. (L.P.P.) :
 - Maximize $Z = x_1 x_2 + 3x_2$ subject to the constraints,

$$x_{1} + x_{2} + x_{3} \le 10$$

$$2x_{1} - x_{3} \le 2$$

$$2x_{1} - 2x_{2} + 3x_{3} \le 6$$

$$x_{1}, x_{2}, x_{3} \ge 0.$$

- (b) Use duality to solve the followign L.P.P. :
 - Maximize $Z = 2x_1 + x_2$

Subject to the constraints :

$$\begin{array}{l} x_1 + 2x_2 \leq 10 \\ x_1 + x_2 \leq 6 \\ x_1 - x_2 \leq 2 \\ x_1 - 2x_2 \leq 1 \\ x_1, x_2 \geq 0. \end{array} \tag{5+5}$$

- 7. (a) Explain how to transform an unbalanced transportation problem into a balanced transportation problem where demand of warehouses is satisfied by the supply of factories.
 - (b) Solve the following transportation problem.

Destination

 1
 2
 3
 Supply

 A
 2
 3
 1
 20

 Source
 B
 5
 4
 8
 15

 C
 5
 6
 8
 30

$$30$$

 Demand
 20
 30
 25
 $5+5$

5+5

- 8. (a) How will you solve an assignment problem where a particular assignment is prohibited?
 - (b) How can you maximize an objective function in the assignment problem?