T(5th Sm.)-Computer Science-G/DSE-A-2/ CBCS/Day - 1

2020

COMPUTER SCIENCE — GENERAL

Paper : DSE-A-2

(Operations Research)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Day 1

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions :

(a) Define a linear programming problem (LPP).

(b) When is a solution to an LPP called a feasible solution?

(c) When is a solution to an LPP called an optimal solution?

- (d) What are slack and surplus variables?
- (e) When is a solution to a system of simultaneous equations called a degenerate solution?
- (f) What do you understand by 2-person zero sum game?
- (g) State the primal-dual relationship.
- (h) Name two methods for solving the transportation problem.
- 2. (a) Obtain all the basic solutions to the following system of linear equations :

$$x_1 + 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + 5x_3 = 5$$

(b) Use Simplex method to solve the following LPP :

Max $Z = 7x_1 + 5x_2$

. .

subject to the conditions,

$$\begin{aligned} x_1 + 2x_2 &\le 6 \\ 4x_1 + 3x_2 &\le 12 \\ x_1 \,, \, x_2 &\ge 0. \end{aligned}$$
5+5

Please Turn Over

 2×5

T(5th Sm.)-Computer Science-G/DSE-A-2/ CBCS/Day - 1 (2)

3. (a) Obtain the dual problem of the following L.P.P :

Max
$$Z = x_1 - 2x_2 + 3x_3$$

subject to

$$-2x_1 + x_2 + 3x_3 = 2$$

$$2x_1 + 3x_2 + 4x_3 = 1$$

$$x_1, x_2, x_3 \ge 0.$$

(b) Prove that the dual of the dual of an LPP is its primal.

5+5

5+5

4. (a) Prove that a necessary and sufficient condition for the existence of a physical solution to a $m \times n$ Transportation Problem is

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

where a_i and b_j denote the availability and requirement at i^{th} origin and j^{th} destination respectively.

(b) Solve the following T.P. to obtain the initial basic feasible solution using Vogel's method.

	D	Е	F	G	Available
А	11	13	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Demand	200	225	275	250	

- 5. (a) Give a mathematical formulation of the Assignment Problem (A.P.).
 - (b) Solve the following assignment problem

	Ι	II	III	IV
А	15	14	12	16
В	23	22	25	24
С	31	34	32	33
D	21	32	44	53

where A, B, C, D are 4 jobs assigned to the machines I, II, III, IV.

Find an allocation of jobs to machines so that the total cost of processing is minimum. 5+5

5+5

(3)

6. (a) Explain the Maxmin principle used in Game Theory.

(b) Solve the game whose pay-off matrix is given by :

Player B

$$B_1 \quad B_2 \quad B_3$$

Player A $A_2 \begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ A_3 \begin{bmatrix} 1 & 3 & -2 \end{bmatrix}$
5+5

- 7. (a) Explain the graphical method for solving an LPP involving two variables.
 - (b) Solve graphically the following LPP.
 - Max $Z = 3x_1 + 2x_2$ subject to $-2x_1 + x_2 \le 1$ $x_1 \le 2$ $x_1 + x_2 \le 3$

 $x_1, x_2 \ge 0.$

- 8. (a) Briefly mention the steps to solve a T.P. using North-West Corner rule.
 - (b) Obtain the initial basic feasible solution using N.W. Corner rule.

	D	Е	F	G	Available
А	7	9	3	2	16
В	4	4	3	5	14
С	6	4	5	8	20
Requirem	∟ ent 11	9	22	8]