2020

COMPUTER SCIENCE - GENERAL

Paper : DSE-A-2

(Operations Research)
Full Marks: 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Day 1

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:
(a) Define a linear programming problem (LPP).
(b) When is a solution to an LPP called a feasible solution?
(c) When is a solution to an LPP called an optimal solution?
(d) What are slack and surplus variables?
(e) When is a solution to a system of simultaneous equations called a degenerate solution?
(f) What do you understand by 2 -person zero sum game?
(g) State the primal-dual relationship.
(h) Name two methods for solving the transportation problem.
2. (a) Obtain all the basic solutions to the following system of linear equations :

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}=4 \\
& 2 x_{1}+x_{2}+5 x_{3}=5
\end{aligned}
$$

(b) Use Simplex method to solve the following LPP :

$$
\text { Max } Z=7 x_{1}+5 x_{2}
$$

subject to the conditions,

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 6 \\
& 4 x_{1}+3 x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(2)
3. (a) Obtain the dual problem of the following L.P.P :

$$
\operatorname{Max} \mathrm{Z}=x_{1}-2 x_{2}+3 x_{3}
$$

subject to

$$
\begin{aligned}
& -2 x_{1}+x_{2}+3 x_{3}=2 \\
& 2 x_{1}+3 x_{2}+4 x_{3}=1 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{aligned}
$$

(b) Prove that the dual of the dual of an LPP is its primal.
4. (a) Prove that a necessary and sufficient condition for the existence of a physical solution to a $m \times n$ Transportation Problem is

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
$$

where a_{i} and b_{j} denote the availability and requirement at $i^{\text {th }}$ origin and $j^{\text {th }}$ destination respectively.
(b) Solve the following T.P. to obtain the initial basic feasible solution using Vogel's method.

		D	E	F	G
A	11	13	17	14	Available
	B	16	18	14	10
C	21	24	13	10	300
Demand	200	225	275	250	

5. (a) Give a mathematical formulation of the Assignment Problem (A.P.).
(b) Solve the following assignment problem

	I	II	III	IV
A	15	14	12	16
B	23	22	25	24
C	31	34	32	33
D	21	32	44	53

where A, B, C, D are 4 jobs assigned to the machines I, II, III, IV.
Find an allocation of jobs to machines so that the total cost of processing is minimum.
6. (a) Explain the Maxmin principle used in Game Theory.
(b) Solve the game whose pay-off matrix is given by :

> | | Player | | | B_{1} |
| :--- | :--- | :---: | :---: | :---: |
| | $\mathrm{~B}_{1}$ | | | |
| $\mathrm{~B}_{2}$ | $\mathrm{~B}_{3}$ | | | |
| | $\mathrm{~A}_{1}$ | | | |$\left[\begin{array}{rrr}1 & 2 & 1 \\ 0 & & \\ 0 & -4 & -1 \\ 1 & 3 & -2\end{array}\right]$

7. (a) Explain the graphical method for solving an LPP involving two variables.
(b) Solve graphically the following LPP.
$\operatorname{Max} Z=3 x_{1}+2 x_{2}$
subject to

$$
\begin{align*}
& -2 x_{1}+x_{2} \leq 1 \\
& x_{1} \leq 2 \\
& x_{1}+x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0 .
\end{align*}
$$

8. (a) Briefly mention the steps to solve a T.P. using North-West Corner rule.
(b) Obtain the initial basic feasible solution using N.W. Corner rule.

