2020

COMPUTER SCIENCE - HONOURS

Paper : CC-1

(Digital Logic)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer any five questions from the following:
(a) Given $\mathrm{F}_{1}=\sum m(0,4,5,6)$ and $\mathrm{F}_{2}=\sum m(0,3,6,7)$. Find the expression $\mathrm{F}_{1}+\mathrm{F}_{2}$.
(b) Realize EX-NOR by NAND gates only.
(c) Differentiate between SRAM and DRAM.
(d) Perform (52) ${ }_{10}-(62)_{10}$ using 2's complement method.
(e) What is biased exponent? What are its advantages?
(f) Draw circuit diagram of 2-input TTL NAND gate.
(g) What is fan out of a logic gate?
(h) A staircase light is controlled by two switches, one at the top and another at the bottom of the stairs. Design a truth table for this system.
2. (a) Realize the following logic expression by NOR gates onlyn $\mathrm{Y}=\overline{\overline{\overline{\mathrm{AB}} \mathrm{C}}}$.
(b) Simplify the following expression and implement it by logic gates.
$Y=\sum(1,3,7,11,15)+d(0,2,5,8,10)$
Draw the truth table.
(c) What are the maxterms in this expression?
3. (a) Convert (1231) $)_{4}$ into its hexadecimal equivalent.
(b) Add: $(3 \mathrm{D} \cdot 2 \mathrm{~A})_{16}+(4 \mathrm{E} \cdot 1 \mathrm{~B})_{16}$
(c) What are the differences between weighted and non-weighted code?
(d) What is floating point representation? Why is it required? Give example.
4. (a) Design $Y_{\text {Sum }}$ of a 3-bit full adder by NAND gates only.
(b) Implement $Y_{\text {carry }}$ of a 3-bit full adder by 4:1 multiplexers and other basic gates.
5. Design an adder by discrete logic gates which can add two numbers $A_{1} A_{0}$ and $B_{1} B_{0}$.
6. (a) Design a master-slave flip-flop by NAND gates only. Explain its working principle.
(b) What is race around condition?
7. (a) Design a decade counter which can count in descending order.
(b) What is negative edge triggerred clock?
