2020

STATISTICS - HONOURS

Paper : CC-5

(Linear Algebra)

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

1. Answer any ten questions:
(a) Express $A=\left[\begin{array}{rrr}4 & 5 & 1 \\ -2 & 7 & 3 \\ 1 & 3 & 4\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
(b) If $A=\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$, find A^{50}.
(c) Find the value of the determinant $\left[\begin{array}{ccc}1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2}\end{array}\right]$.
(d) If A and B are matrices of order n such that $A+B=I_{n}$ and $A B=0$, show that A and B are both idempotent.
(e) If $A B=B$ and $B A=A$, show that both the matrices A and B are idempotent.
(f) For a real orthogonal matrix A, show that $\left|A^{-1}\right|=|A|$.
(g) If A is a real skew symmetric matrix and $(I+A)$ is non-singular, show that $(I+A)^{-1}(I-A)$ is orthogonal.
(h) If $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$, find the rank of $A+A^{2}$.
(i) If A is a real non-symmetric matrix of order 3, find the determinant of the matrix $A-A^{T}$.
(j) If $S=\{(x, y, 0): x, y \in \mathbb{R}\}$ and $T=\{(0, y, z): y, z \in \mathbb{R}\}$, find $\operatorname{dim}(S \cap T)$.
(k) If $S=\{(x, 0): x \in \mathbb{R}\}$ and $T=\{(u, u): u \in \mathbb{R}\}$, then show that $\mathbb{R}^{2}=S+T$, Here ' + ' denotes a sum of two vector sub spaces.
(l) If $S=\{(x, 0): x \in \mathbb{R}\}$ and $T=\{(u, u): u \in \mathbb{R}\}$ modify T, so that $\mathbb{R}^{2}=S \oplus T$ Here \oplus denotes the direct sum of two vector sub spaces.
(m) Let λ be an eigenvalue of a non-singular matrix A and show that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.
(n) If A is a real positive definite matrix, then show that A^{-1} is also positive definite.
2. Answer any four questions:
(a) If $S_{r}=\alpha^{r}+\beta^{r}+\gamma^{r}$, prove that $\left|\begin{array}{lll}s_{0} & s_{1} & s_{2} \\ s_{1} & s_{2} & s_{3} \\ s_{2} & s_{3} & s_{4}\end{array}\right|=(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2}$.
(b) If A is a non-singular matrix such that sum of each row (column) is k, then prove that sum of each row (column) of A^{-1} is $1 / k$.
(c) "If A and B are real orthogonal matrices of same order and $|A|+|B|=0$, then $(A+B)$ is a singular matrix."- Prove or disprove.
(d) What do you mean by the null space $\mathcal{N}(B)$ of an $m \times n$ matrix B ? Show that

$$
\operatorname{dim}(\mathcal{N}(B))=n-\operatorname{rank}(B)
$$

(e) What is rank factorisation of a matrix? State and prove the rank factorisation theorem.
(f) The following are four vectors spanning a sub space $S:\left\{\underline{\alpha}_{1}, \underline{\alpha}_{2}, \underline{\alpha}_{3}, \underline{\alpha}_{4}\right\}$ where $\underline{\alpha}_{1}=(1,2,3,-1)^{\prime}, \underline{\alpha}_{2}=(2,2,6,-1)^{\prime}, \underline{\alpha}_{3}=(2,2,6,-1)^{\prime}$ and $\underline{\alpha}_{4}=(3,3,7,0)^{\prime}$. Find the dimension of S and a basis of S^{\perp}.
3. Answer any two questions :
(a) Find the determinant of the following matrix :
(i) $\left|\begin{array}{cccccc}1 & \rho & \rho^{2} & \rho^{3} & \ldots & \rho^{n-1} \\ \rho & 1 & \rho & \rho^{2} & \ldots & \rho^{n-2} \\ \rho^{2} & \rho & 1 & \rho & \ldots & \rho^{n-3} \\ \cdot & \cdot & \cdot & \cdot & \ldots & \cdot \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \rho^{n-4} & \ldots & 1\end{array}\right|$ where $|\rho|<1$.
(ii) Let A be a non-singular matrix of order n and $\underline{\mathrm{U}}$ and $\underline{\mathrm{V}}$ be two vectors of order n. Then, show that $\left(A+U V^{\prime}\right)$ is invertible if and only if $V^{\prime} A^{-1} U \neq 1$ and in that case $\left(A+U V^{\prime}\right)^{-1}=A^{-1}-\frac{A^{-1} U V^{\prime} A^{-1}}{1+V^{\prime} A^{-1} U}$.
(iii) Use the above result to find the inverse of the matrix
$M=(a-b) I_{n}+b 1_{n} 1_{n}{ }^{\prime}$ where $a \neq b$ and $a+(n-1) b \neq 0$.
(b) (i) Derive Gram-Schmidt process of orthogonalisation of a given set of independent vectors.
(ii) Show that the following set of vectors in \mathbb{R}^{3} is an independent set and orthogonalize them in Gram-Schmidt process to get an orthogonal basis of \mathbb{R}^{3} -

$$
\left\{(1,2,1)^{\prime} ;(2,1,2)^{\prime} ;(1,0,-1)^{\prime}\right\}
$$

(c) (i) If A is a real symmetric matrix of order n, then show that there exists an orthogonal matrix P such that $P A P^{\prime}=\Lambda$ and $P P^{\prime}=I$, where $\Lambda=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) ; \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$, being the distinct eigenvalues.
(ii) Discuss how the above result may be used to find the higher powers of A and also the inverse of A, when A is non-singular.

