2020

STATISTICS - HONOURS

Paper: CC-11
(Statistical Inference-II)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

1. Answer any ten questions :
(a) Distinguish between an Estimator and an Estimate.
(b) Give a real life example of a two-sided alternative hypothesis.
(c) State two properties of Likelihood ratio test.
(d) State one use of Pearsonian χ^{2}-statistic.
(e) Explain the meaning of the first letter U in UMVUE.
(f) Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random sample from normal (μ, σ^{2})-distribution, where both μ and σ are unknown.

Define $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$, where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. We know that s^{2} is unbiased for σ^{2}. Show that s is NOT unbiased for σ.
(g) Define a uniformly most powerful unbiased test.
(h) State one advantage of Rao-Blackwell theorem.
(i) Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random sample from normal $\left(\mu, \sigma^{2}\right)$ distribution, where both μ and σ are unknown. Suggest two sufficient statistics for μ.
(j) Give an example of an unbiased estimator, involving all the members of a random sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, which is not consistent.
(k) State one merit and one demerit of Likelihood ratio test.
(l) Give an example where the asymptotic normality of a sequence of random variables can be proved using Lindeberg-Levy Central Limit Theorem.
(m) What does the term "accurate" signify in a UMA confidence set?
(n) What do you mean by confidence coefficient of a confidence interval?
(o) Explain the term 'test function'.
2. Answer any four questions:
(a) If $X_{n} \xrightarrow{P} 1$, then using the definition of convergence in probability verify whether $X_{n}{ }^{2} \xrightarrow{P} 1$.
(b) Give an example of a test for which Probability [Type-I error] + Probability [Type-II error] is greater than 1.2. Can it be a most powerful test? Justify your answer.
(c) Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random sample from uniform $(\theta, 1)$-distribution, $\theta<1$. Define $X_{(1)}=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Find MSE and bias of $X_{(1)}$.
(d) Let $\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)$ be a random sample from exponential $\left(\right.$ Mean $\left.=\frac{1}{\beta}\right),(\beta>0)$ distribution. If $g(\beta)=P\left(X_{1}>1\right)$, then find the asymptotic distribution of $g\left(\bar{X}_{n}\right)$, where \bar{X}_{n} is the sample mean of $X_{1}, X_{2}, X_{3} \ldots, X_{n}$.
(e) Consider any discrete distribution which is a member of one parameter exponential family. Derive likelihood ratio test for a simple null hypothesis against one-sided alternative based on a random sample of size n from the distribution chosen by you.
(f) Write a note on Rao-Cramer inequality.
3. Answer any two questions :
(a) State Neyman-Pearson lemma and prove its sufficiency part. Suppose $X \sim$ exponential (Mean $=\theta$) and $Y \sim N(0$, variance $=\theta / 2), \theta>0$ and $X \& Y$ are independent. Based on X and Y, find a uniformly most powerful test at level $\alpha=0.05$ for testing $H_{0}: \theta=1$ against $H_{1}: \theta<1$ as explicitly as possible.
(b) (i) Define an unbiased estimator. Suppose $X \sim$ Uniform $[-1, \theta], \theta>0$. Define $Y=1$ if $X>0$ and $Y=0$, otherwise. Is it possible to find real numbers a and b such that $a+b Y$ is an unbiased estimator of θ ? Is it possible to find real numbers a and b such that $a+b Y$ is an unbiased estimator of $\frac{\theta-1}{\theta+1}$?
(ii) Explain the concept of maximum likelihood estimator (MLE). Let $\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)$ be a random sample from exponential (Mean $=2 \theta$) distribution. Find (with justification) MLE of $P\left(X_{3}>3\right)$.
(c) (i) Let $\left\{X_{n}\right\}$ be a sequence of independent random variables such that $E\left(X_{n}\right)=\mu$ and $\operatorname{Var}\left(X_{n}\right) \leq \frac{2021}{n^{1.202}}$ for all $n=1,2,3 \ldots$. Verify whether the Weak law of large numbers holds.
(ii) Discuss a large sample test for testing the equality of two Poisson means. If the null hypothesis is accepted, describe a method for constructing a 95% confidence interval of the common value.

