2021

STATISTICS - HONOURS

Fifth Paper

(Group - A)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
Notation have their usual significance.

Unit - I

1. Attempt any two questions from the following :
(a) Suppose $R=\left(\rho_{i j}\right)_{i, j=1(1) k}$ is the correlation matrix for a k-dimensional random vector. Show that $|R| \leq 1$ and also interpret the case when $|R|=1$.
(b) If a random vector $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)^{\prime} \sim N_{p}\left(\mu, \sum\right)$, evaluate $E\left(e^{\sum_{j=i}^{p} X_{j}}\right)$.
(c) Let $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)^{\prime} \sim N_{p}\left(\mu_{1}, I_{p}\right)$ independently of $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{p}\right)^{\prime} \sim N_{p}\left(\mu_{2}, \Sigma\right), \Sigma>0$. Also let $U=\sum^{-\frac{1}{2}}\left(X-\mu_{1}\right)$ and $V=\sum^{-\frac{1}{2}}\left(X-\mu_{2}\right)$, then prove that $\operatorname{Var}\left(U^{\prime} V\right)=p$.
(d) If $\left(N_{1}, N_{2}, \ldots, N_{m}\right) \sim \operatorname{Multinomial}\left(n \mid p_{1}, p_{2}, \ldots, p_{m}\right)$, find the condition mean and variance of N_{i}, given $\sum_{j \neq i}^{m} N_{j}=c$, for $0 \leq c<n$.
2. Attempt any one question from the following:
(a) (i) Let X, Y and Z be independent random variables having same variance. Define the random variables $W_{1}=(X-Z) / \sqrt{2}, W_{2}=(X+Y+Z) / \sqrt{3}$ and $W_{3}=(X+2 Y+Z) / \sqrt{6}$. Find the multiple correlation coefficient of W_{1} on $\left(W_{2}, W_{3}\right)$.
(ii) Suppose $\left(X_{1}, X_{2}, \ldots, X_{p}\right) \sim \operatorname{Multinomial}\left(n \mid \pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)$ and c_{i} 's are non-zero real numbers such that $\sum_{i=1}^{p} c_{i} \pi_{i=0}$. If $U=\sum_{i=1}^{p} c_{i} X_{i} \quad$ and $V=\sum_{i=1}^{p}\left(X_{i} / c_{i}\right)$, verify whether two random variables U and V are linearly independent or not.
(b) (i) For any non null vector $\alpha \in \mathbb{R}^{\prime}$, establish that $\alpha^{\prime} X \sim N\left(\alpha^{\prime} \mu, \alpha^{\prime} \Omega \alpha\right) \Leftrightarrow X \sim N_{p}(\mu, \Omega)$ where X is a p-dimensional random vector and $\Omega>0$.
(ii) Let $X_{0}, X_{1}, \ldots, X_{n}$ be $n+1$ independent standard normal variables. Define the random variables

$$
Y_{j}=\rho X_{0}+\sqrt{\left(1-\rho^{2}\right)} X_{j}, j=1,2, \ldots, n
$$

Obtain the distribution of $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{\prime}$. Also express the partial correlation coefficient $\rho_{12 \cdot 34 \ldots n}$ in terms of ρ.

Unit - II

3. Attempt any two questions from the following:
(a) Suppose in a group of n people selected at random from a community contains $m(<n)$ men of which m_{0} are smokers. Among $(n-m)$ women in the group there are f_{0} smokers. Construct Pearsonian Chi-square test to judge whether a man is more prone to smoking habit than a woman.
(b) Let T_{n} denote the mean of n independent random observations having common pdf $f_{\theta}(x)=2(\theta-x) / \theta^{2}, 0<x<\theta, \theta>0$.
Applying delta method, show that $\sqrt{n}\left(\log T_{n}-\log (\theta / 3)\right) \xrightarrow{D} N(0,1 / 2)$, as $n \rightarrow \infty$.
(c) Based on n independent copies of $X \sim N\left(\mu, \sigma^{2}\right)$, obtain the large sample standard error of sample coefficient of variation.
(d) Find the asymptotic distribution of sample median of a random sample of size n drawn from the distribution with pdf $f_{\theta}(x)=2 \theta^{2} / x^{3}, x>\theta, \theta>0$.
4. Attempt any one question from the following :
(a) (i) Explain the term 'convergence in distribution'. If, as $n \rightarrow \infty, X_{n} \xrightarrow{D} X$ and $Y_{n} \xrightarrow{P} Y$, prove that $X_{n}+Y_{n} \xrightarrow{D} X+Y$.
(ii) State the central limit theorem for a sequence of iid random variables. For a sequence $\left\{X_{k}\right\}_{k \geq 1}$ of independent Poisson (λ) variables prove that, as $n \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{n}\left(\sqrt{S_{n} / n}-\lambda \sqrt{n / S_{n}}\right) \xrightarrow{D} N(0,1) \tag{2+6}
\end{equation*}
$$

where $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$.
(b) (i) Based on two independent random samples of sizes n_{1} and n_{2} from $N\left(\mu_{1}, \sigma_{1}{ }^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}{ }^{2}\right)$ respectively, describe a large sample test procedure for testing the null hypothesis $H_{0}: \sigma_{1}=\sigma_{2}$. If H_{0} is rejected, then determine $100(1-\alpha) \%$ confidence interval for $\left|\sigma_{1}-\sigma_{2}\right|$.
(ii) Suppose $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ represents a random sample drawn from $N\left(\mu, \sigma^{2}\right)$ population. Derive the asymptotic distribution of sample r-th order central moment.
$(5+3)+7$

