2021

STATISTICS - HONOURS

Paper : CC-3
(Mathematical Analysis)
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Throughout, m stands for 100 plus the number represented by the last two digits of your roll number; i.e. $m=100+10 x+y$ if the last digit of your roll number is y and the second last digit is x.

You should first put the value of m before solving each question. Do not work with general m and then replace it subsequently by the actual value.

1. Answer any ten. If you answer more than ten, then only the first ten attempted will be checked.
(a) Decide if the set $\left\{\sin \frac{x}{m}+\frac{m}{x}:|x| \geq \frac{39}{m}\right\}$ is bounded above and below or not.
(b) Suppose $x_{0}=0, x_{1}=\frac{1}{2}$ and for $n \geq 2, x_{n+1}=\frac{3}{2} x_{n}-\frac{1}{2} x_{n-1}$. Find $x_{2 m}$.
(c) Find $\lim _{n \rightarrow \infty}\left(\sqrt[m]{m}-\frac{3}{n}\right)^{2 m}$.
(d) Obtain $\lim _{x \rightarrow \infty} \frac{x^{m}+(\ln x)^{m}}{x^{m} \ln x}$, if it exists.
(e) Compute $\sum_{n=m}^{\infty} \frac{1}{(n+m)(n+m+1)}$.
(f) Decide if the series $\frac{1}{m}-\frac{2^{m}}{m^{2}}+\frac{3^{m}}{m^{3}}-\frac{4^{m}}{m^{4}}+\ldots+\frac{(-1)^{n} n^{m}}{m^{n}}+\ldots$ converges, and if so, whether absolutely.
(g) Give an example of two monotone functions f and g on $[0, m]$ such that $f . g$ is not monotone.
(h) Obtain the radius of convergence of the power series $\sum_{n=m+1}^{\infty} n^{m}(m x)^{n}$.
(i) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined as $f(x)= \begin{cases}x(x-1)(x-2) \ldots(x-m), & x \text { rational, } \\ 0, & x \text { irrational. }\end{cases}$ At which points in \mathbb{R} is f continuous?
(j) For which values of the positive integer n is the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\frac{\sin ^{n} x}{x^{m}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

differentiable?
(k) Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that has all derivatives at 2 and $f^{(n)}(2)=m^{n}$ for every $n \geq 1$.
(l) Evaluate $\int_{0}^{\frac{m}{2}} x^{m}(m-2 x) d x$.
(m) Suppose $f:(0 ; \infty) \rightarrow \mathbb{R}$ is defined by

$$
f(x)=\int_{\frac{x}{m}}^{m x} \frac{\sin u}{u^{3}} d u .
$$

Compute $f^{\prime}(m)$.
(n) Compute the coefficient of x^{m} in expansion of $\sin m x+\cos m x$.
(o) Maximize $\left(x_{1} x_{2} \ldots x_{m}\right)^{3}$ subject to $x_{1}^{2}+x_{2}^{2}+\cdots+x_{m}^{2}=m^{3}$.
2. Answer any three questions :
(a) Give an example of a sequence $\left(x_{n}\right)_{n \geq 1}$ such that the set of limits of subsequences of the sequence is the interval $\left[\frac{1}{m}, m\right]$.
(b) Let $f:[0, m] \rightarrow \mathbb{R}$ be Riemann integrable on $[0, m]$. Prove from the definition that the function $g:[0, m] \rightarrow \mathbb{R}$ defined by

$$
g(x)=f(m-x)
$$

is so too, with the same integral.
(c) Evaluate $\int_{0}^{m} \int_{0}^{m} \frac{d x d y}{(2 m+m x+y)^{2}}$
(d) Show that the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ defined by

$$
f(x)=m^{x} \cos x-\frac{1}{m}
$$

has a root in $(-\pi, \pi)$.
(e) Find all stationary points of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=m x^{2}+3 x y+m y^{2}+x-y-m
$$

and determine for each whether it is a point of local minimum, local maximum or a saddle point.
3. Answer any three questions:
(a) (i) Prove that the sequence $\left((-1)^{n} m^{1 / n}\right)_{n \geq 1}$ does not converge.
(ii) Give a complete proof that there exists $x \in \mathbb{R}$ with $x^{m}=m$.
(b) If $\left(x_{n}\right)_{n \geq 1}$ is a sequence of positive real numbers such that for every $n \in \mathbb{N}, x_{n+m}<\frac{x_{n}}{m}$, show that the series $\sum_{n=1}^{\infty} x_{n}$ converges.
(c) If $f:[m, m+1] \rightarrow \mathbb{R}$ is continuous on $[m, m+1]$ and differentiable on $(m, m+1)$ such that $\lim _{x \rightarrow m+} f^{\prime}(x)=\frac{m}{2}$, show that f has right derivative $\frac{m}{2}$ at m.
(d) (i) Let a, b be real numbers with $a>0$. If

$$
f(x)= \begin{cases}\frac{e^{m x}-1}{a x}, & x<0 \\ b, & x=0 \\ \frac{\ln \sin m x}{\ln x}, & x>0\end{cases}
$$

then verify if a and b can be found to make f continuous.
(ii) If $f_{n}(x)=\frac{x^{n}}{m+x^{n}}, x \in(-1,1]$ for $n \geq 1$, does $\left(f_{n}\right)$ converge pointwise on $(-1,1]$? Does it converge uniformly? Would your answers change if the domain is changed to $[-1,1]$? Explain.
(e) (i) Suppose the sequence $\left(x_{n}\right)_{n \geq 1}$ converges to x in \mathbb{R}. Does the sequence

$$
\frac{1}{n}\left\{x_{m n+1}+x_{m n+2}+\ldots+x_{2 m n-1}+x_{2 m n}\right\}, \quad n \geq 1,
$$

always converge? If so, find its limit.
(ii) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and

$$
f\left(\frac{n}{k \sqrt{m}}\right)=\frac{n^{2}}{k^{2}}
$$

for every $n \in \mathbb{Z}$ and $k \in \mathbb{N}$. Show that $f(x)=m x^{2} \forall x \in \mathbb{R}$.

