T(4th Sm.)-Statistics-H/CC-9/CBCS

2021

STATISTICS — HONOURS

Paper : CC-9

(Statistical Inference-I and Sampling Distributions)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer *any five* questions from question nos. 1-8. 2×5

- 1. Let R_1 and R_2 be independent and identically distributed Uniform $(0, \theta), \theta > 0$. Then can we use the statistics $T(R_1, R_2) = \max(R_1, R_2)/\min(R_1, R_2)$ to estimate θ ?
- 2. Let X be a single observation from $N(\theta, 1)$, $\theta \in \Theta = \{-5, 5\}$. Suggest a test for testing $H : \theta = -5$ against $K : \theta = 5$ with both type I and type II errors ≈ 0 .
- 3. Let X and Y be independent random variables with probability mass functions P(X = -1) = 1/4, P(X = 1) = 3/4 and P(Y = -1) = 3/4, P(Y = 1) = 1/4 respectively. What is the distribution of $X^2 Y^2$?
- **4.** Let $\{X_1, \dots, X_{10}\}$ be a random sample from $N(\theta, 1), \theta \in R$. Consider testing problem $H_0: \theta = 0$ against $H_1: \theta \neq 0$. Define P-value of the test based on T = Number of X_i 's such that $|X_i \theta| < c, c$ is some known positive number (only definition).
- 5. Suppose we are lucky enough to repeat a random experiment 100 times under identical experimental conditions. Each time we observe a random sample of size 10 and compute the value t of a statistics $T(X_1,...,X_{10})$. The values of the statistics are $t_1,...,t_{100}$. Based on these values is it feasible to find the approximate sampling distribution of T and its standard error?
- 6. Based on a random sample $\{X_1, \dots, X_5\}$ from N(0, 1), construct $T(X_1, \dots, X_5)$ that follows Snedecor's *F* distribution with d.f. (2, 3).
- 7. Let $X_1, ..., X_n$ be a random sample from N(0, 1). Define sample range $R(X_1, ..., X_n)$. Are the sampling distributions of $R(X_1, ..., X_n)$ and $R(-X_1, ..., -X_n)$ identical?
- 8. Distinguish between Student's *t* and Fisher *t*-distributions with examples.

Answer *any two* questions from question nos. 9-11. 5×2

- 9. Using a suitable example, explain the concept of P-value for a left-tailed test.
- 10. Let X_1, \ldots, X_n be independent random variables having an identical continuous distribution F(x). Find

the distribution of $U = \frac{F(X_{(n)}) - F(X_{(2)})}{F(X_{(n)}) - F(X_{(1)})}$, where $X_{(i)}$'s are order statistics. Prove all intermediate steps in detail.

Please Turn Over

T(4th Sm.)-Statistics-H/CC-9/CBCS

11. Suppose we consider samples of individuals of sizes n_1 and n_2 from two different areas A and B of a city. Further, suppose readings on a continuous marker Y are taken for these two samples. If an individual with the marker value greater than a threshold K (known) is considered to be a diseased person, then based on Y - values perform exact test for $H_0: P_A (= P(\text{An individual is diseased in Area } A)) = P_B (=P(\text{An individual is diseased in Area } B))$ against $H_1: P_A > P_B$. State the underlying assumptions, if any, clearly.

(2)

Answer any three questions from question nos. 12-16.

- 12. For a bivariate sample $\{(Y_i, X_i); i = 1, ..., n\}$, consider the regression model $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, i = 1, ..., n, x_i is the observed value of X_i and ε_i 's are independent and identically distributed as $N(0, \sigma^2)$. Derive the exact sampling distribution of the least square estimate of the slope β_1 . Hence, find a confidence interval of the slope with confidence coefficient 1α , $\alpha \in (0, 1)$. Is it possible to comment on acceptance or rejection for the testing problem H_0 : $\beta_1 = \beta_{1.0}$ against H_0 : $\beta_1 \neq \beta_{1.0}$ ($\beta_{1.0}$ is a known specified value) from above confidence interval? If so, explain.
- 13. (a) Let $\{(X_1,...,X_n\}$ be a random sample from $N(\mu,\sigma^2), \mu \in \mathbb{R}, \sigma > 0$. Find the sampling distribution of

$$\frac{(X_n - \bar{X}_n)^2}{[(n-1)S_n^2 - \{n/(n-1)\}(X_n - \bar{X}_n)^2]}$$

where $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$ and $S_n^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$.

(b) Let $\{X_1, ..., X_n\}$ be a random sample from a continuous distribution with distribution function G(.). Then for positive integer m < n, find the distribution of

$$\frac{\sum_{1}^{m} \ln \{G(X_{i})\}}{\sum_{1}^{n} \ln \{G(X_{i})\}}$$
5+5

- 14. (a) Based on two independent random samples from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ with all parameters unknown, describe a size α test procedure for testing $H_0: \sigma_1^2 = \sigma_2^2$ against $H_1: \sigma_1^2 \neq \sigma_2^2$. Hence, comment on testing the null hypothesis $H_{01}: \sigma_1^2 = \sigma_2^2 = 1$ against $H_1: \sigma_1^2 \neq \sigma_2^2$?
 - (b) Find the mean and variance of Student's t-distribution. Show that its density approaches to standard normal distribution as degrees of freedom increases. 6+4
- 15. (a) Let $X_1, ..., X_n$ be a random sample from exponential (λ) distribution with $\lambda > 0$. Show that correlation $(X_{(1)}, X_{(n)}) = n^{-1} \{\sum_{i=1}^{n} i^{-2}\}^{-1/2}.$
 - (b) Find the moment generating function of Chi-Square distribution with d.f. *n*. Hence or otherwise prove the additive property of Chi-square distributions. 5+5

16. Let (X, Y) follow bivariate normal distribution $BN(0, 0, 1, 1, \rho = 0)$. If R denote the sample correlation coefficient based on random sample of size n drawn from the above distribution, show that $\frac{R\sqrt{n-2}}{\sqrt{1-R^2}}$ follows t-distribution with (n - 2) d.f. Discuss its use for testing $H : \rho = 0$ in bivariate normal population $BN(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho)$. 7+3

(3)