2021

STATISTICS - HONOURS

Paper: CC-14
(Multivariate Analysis and Non-Parametric Methods)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Define a multivariate data set. Give an example.
(b) If $\underset{\sim}{x}, \ldots, \underset{\sim}{x}$ denote n sample observations on a p-vector $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{p}\right)^{\prime}$, where $x_{1}, x_{2}, \ldots, x_{p}$ are p univariates, define sample mean vector $\underset{\sim}{\bar{x}}$. Show that it is the vector of sample means of $x_{1}, x_{2}, \ldots, x_{p}$.
(c) What do you mean by a random p-vector $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{p}\right)^{\prime}$?
(d) What is the main objective of Principal Component Analysis (PCA)?
(e) Mention a situation with justification when the dispersion matrix of a random vector is positive semi definite (p.s.d.).
(f) Discuss a real life application of multinomial distribution.
(g) Suppose a non-parametric test is proposed for testing the null hypothesis $H_{0}: \theta=10$, where θ denotes population median. Is H_{0} a simple hypothesis or a composite one? Justify.
(h) Mention a merit and a demerit of Wilcoxon Signed Rank test over Ordinary Sign test.

Answer any two questions from questions 2-4.
2. Show that a collection $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{p}\right)$, defined on (Ω, \mathcal{F}); where Ω denotes reference set and \mathcal{F}, a sigma field from Ω, such that $\underset{\sim}{X} \in \mathbb{R}^{p}$, is a random p -vector if and only if X_{1}, \ldots, X_{p} are p random univariate.
3. (a) Suppose $\sum_{p \times p}=\operatorname{Disp}(\underset{\sim}{X}), \underset{\sim}{X}$ being a random p-vector. Prove that $\operatorname{Disp}\left(A^{\prime} \underset{\sim}{X}\right)=A^{\prime} \sum A$, where $\stackrel{p \times p}{A}$ is a fixed matrix with real elements.
(b) If \sum and R denote the dispersion and correlation martix of a random p-vector, prove that \sum, positive definite $\Leftrightarrow R$, positive definite.
4. Discuss the mechanism of choosing principal components in a PCA. Explain why this mechanism helps in reducing the number of components of a random vector.

Answer any three questions from questions 5-9.
5. (a) Discuss Wald-Wolfowitz Run test for testing whether two independent random samples are drawn from the same population or not.
(b) Based on a sample of distribution of digital ration cards to n families, describe briefly a test procedure for testing whether the cards have been distributed randomly among privileged and under-privileged families.
6. In the context of a random p-vector $\underset{\sim}{X}=\left(X_{1}, X_{2}, \ldots, X_{p}\right)^{\prime}, p \geq 2$, suppose $\eta_{1 \cdot 23 \ldots p}$ denotes the true regression of X_{1} on $X_{2}, \ldots X_{p}$. Then show that
(a) $\operatorname{cov}\left(X_{j}, \eta_{1 \cdot 23 \ldots p}\right)=\sigma_{1 j}=\operatorname{cov}\left(X_{1}, X_{j}\right) \forall j=2,3, \ldots, p$.
(b) $\operatorname{cov}\left(X_{1}, \eta_{1 \cdot 23 \ldots p}\right)=V\left(\eta_{1 \cdot 23 \ldots p}\right)$.
(c) $\rho_{1 \cdot 23 \ldots p}^{2} \leq \xi_{1 \cdot 23 \ldots p}^{2}$, where $\rho_{1 \cdot 23 \ldots p}$ denotes the multiple correlation of X_{1} on X_{2}, \ldots, X_{p}, and $\xi_{1 \cdot 23 \ldots p}=\operatorname{corr}\left(X_{1}, \eta_{1 \cdot 23 \ldots p}\right)$.
7. If a random p-vector $\underset{\sim}{X} \sim N_{p}\left(\underset{\sim}{\mu}, \sum\right), \sum$, $p . d$, , then
(a) prove that $(\underset{\sim}{X}-\underset{\sim}{\mu})^{\prime} \sum^{-1}(\underset{\sim}{X}-\underset{\sim}{\mu}) \sim \chi_{p}^{2}$
(b) find the distribution of $\underset{\sim}{X}{ }^{(2)}-\stackrel{s \times r}{\mathrm{~A}} \underset{\sim}{X}{ }^{(1)}$ where $\underset{\sim}{X} \underset{p \times 1}{ }=\left(\underset{\sim}{X} \underset{r \times 1}{(1)^{\prime}}, \underset{\sim}{X}{ }_{s \times 1}^{(2)}\right)^{\prime},{\underset{\sim}{x}}_{\underset{\sim}{(1)}}^{(1)}$ and $\underset{\sim}{X} \underset{s \times 1}{(2)}$ being two partitions of $\underset{\sim}{X}{ }_{p \times 1}, r+s=p, r, s \geq 1$, and $\stackrel{\mathrm{s} \times \mathrm{r}}{\mathrm{A}}$ is a fixed matrix of rank s.
8. Suppose $\underset{\sim}{Y}=\left(Y_{1}, \ldots, Y_{k}\right) \sim \operatorname{multinomial}\left(m ; p_{1}, \ldots, p_{k}\right) ; \sum_{i=1}^{k} p_{i}<1$
(a) Find the partial correlation coefficient $\rho_{12 \cdot 34 \ldots k}$ between Y_{1} and Y_{2} eliminating the effects of Y_{3}, \ldots, Y_{k}.
(b) Get the distribution of $\sum_{i=1}^{k} Y_{i}$.
9. Suppose yield of paddy $\left(X_{1}\right)$ is suggested to predict based on a linear function of amount of rainfall $\left(X_{2}\right)$, amount of temperature $\left(X_{3}\right)$, amount of irrigation $\left(X_{4}\right)$ applied and amount of fertilizers $\left(X_{5}\right)$ and pesticides $\left(X_{6}\right)$ used. Assuming normality suggest a suitable test procedure, on the basis of n sample observations on ($X_{1}, X_{2}, \ldots, X_{6}$), for testing.
(a) Whether the linear prediction function is useful or not for the purpose of prediction, and
(b) Whether the amount of irrigation $\left(X_{4}\right)$ can be dropped from the linear prediction formula without making any significant change in the usefulness of the prediction formula.

