T(6th Sm.)-Statistics-H/CC-14/CBCS

2021

STATISTICS — HONOURS

Paper : CC-14

(Multivariate Analysis and Non-Parametric Methods)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions :

(a) Define a multivariate data set. Give an example.

- (b) If $x_1,...,x_n$ denote *n* sample observations on a p-vector $x = (x_1,...,x_p)'$, where $x_1, x_2,...,x_p$ are *p* univariates, define sample mean vector \overline{x} . Show that it is the vector of sample means of $x_1, x_2,...,x_p$.
- (c) What do you mean by a random p-vector $X = (X_1, ..., X_p)'$?
- (d) What is the main objective of Principal Component Analysis (PCA)?
- (e) Mention a situation with justification when the dispersion matrix of a random vector is positive semi definite (p.s.d.).
- (f) Discuss a real life application of multinomial distribution.
- (g) Suppose a non-parametric test is proposed for testing the null hypothesis $H_0: \theta = 10$, where θ denotes population median. Is H_0 a simple hypothesis or a composite one? Justify.
- (h) Mention a merit and a demerit of Wilcoxon Signed Rank test over Ordinary Sign test.

Answer *any two* questions from questions 2-4.

- 2. Show that a collection $X = (X_1, ..., X_p)$, defined on (Ω, \mathcal{F}) ; where Ω denotes reference set and \mathcal{F} , a sigma field from Ω , such that $X \in \mathbb{R}^p$, is a random p-vector if and only if $X_1, ..., X_p$ are p random univariate.
- 3. (a) Suppose $\sum_{p \times p} = Disp(X)$, X being a random p-vector. Prove that $Disp(A'X) = A' \sum A$, where

A is a fixed matrix with real elements.

(b) If \sum and R denote the dispersion and correlation martix of a random p-vector, prove that \sum , positive definite $\Leftrightarrow R$, positive definite. 5

Please Turn Over

 2×5

T(6th Sm.)-Statistics-H/CC-14/CBCS

4. Discuss the mechanism of choosing principal components in a PCA. Explain why this mechanism helps in reducing the number of components of a random vector. 5

Answer any three questions from questions 5-9.

- 5. (a) Discuss Wald-Wolfowitz Run test for testing whether two independent random samples are drawn from the same population or not.
 - (b) Based on a sample of distribution of digital ration cards to n families, describe briefly a test procedure for testing whether the cards have been distributed randomly among privileged and under-privileged families. 10
- 6. In the context of a random p-vector $X = (X_1, X_2, ..., X_p)', p \ge 2$, suppose $\eta_{1:23...p}$ denotes the true regression of X_1 on $X_2, ..., X_p$. Then show that
 - (a) $\operatorname{cov}(X_j, \eta_{1:23...p}) = \sigma_{1j} = \operatorname{cov}(X_1, X_j) \forall j = 2, 3, ..., p.$
 - (b) $\operatorname{cov}(X_1, \eta_{1:23...p}) = V(\eta_{1:23...p}).$
 - (c) $\rho_{1\cdot23\dots p}^2 \leq \xi_{1\cdot23\dots p}^2$, where $\rho_{1\cdot23\dots p}$ denotes the multiple correlation of X_1 on X_2,\dots,X_p , and $\xi_{1\cdot23\dots p} = \operatorname{corr}(X_1,\eta_{1\cdot23\dots p}).$ 10
- 7. If a random p-vector $X \sim N_p(\mu, \Sigma), \Sigma, p.d,$, then
 - (a) prove that $(\underline{X} \underline{\mu})' \Sigma^{-1} (\underline{X} \underline{\mu}) \sim \chi_p^2$
 - (b) find the distribution of $X^{(2)} \stackrel{s \times r}{A} X^{(1)}$ where $X_{p \times l} = (X^{(1)'}_{r \times l}, X^{(2)'}_{s \times l})'$, $X^{(1)}_{r \times l}$ and $X^{(2)}_{s \times l}$ being two partitions of $X_{p \times l}, r + s = p, r, s \ge 1$, and $\stackrel{s \times r}{A}$ is a fixed matrix of rank s. 10
- 8. Suppose $Y = (Y_1, ..., Y_k) \sim \text{multinomial}(m; p_1, ..., p_k); \sum_{i=1}^k p_i < 1$
 - (a) Find the partial correlation coefficient $\rho_{12\cdot 34\ldots k}$ between Y_1 and Y_2 eliminating the effects of Y_3,\ldots,Y_k .

(b) Get the distribution of
$$\sum_{i=1}^{k} Y_i$$
. 10

- T(6th Sm.)-Statistics-H/CC-14/CBCS
- 9. Suppose yield of paddy (X_1) is suggested to predict based on a linear function of amount of rainfall (X_2) , amount of temperature (X_3) , amount of irrigation (X_4) applied and amount of fertilizers (X_5) and pesticides (X_6) used. Assuming normality suggest a suitable test procedure, on the basis of *n* sample observations on $(X_1, X_2, ..., X_6)$, for testing.
 - (a) Whether the linear prediction function is useful or not for the purpose of prediction, and
 - (b) Whether the amount of irrigation (X_4) can be dropped from the linear prediction formula without making any significant change in the usefulness of the prediction formula. 10